![Spark 3.x大数据分析实战(视频教学版)在线阅读](https://wfqqreader-1252317822.image.myqcloud.com/cover/98/47216098/b_47216098.jpg)
会员
Spark 3.x大数据分析实战(视频教学版)
更新时间:2023-07-17 19:33:04 最新章节:9.6 动手练习
书籍简介
本书基于Spark3.2.x版本,从Spark核心编程语言Scala讲起,涵盖了当前整个Spark生态系统主流的大数据开发技术。全书共9章,第1章讲解了Scala语言的基础知识,包括IDEA工具的使用等;第2章讲解了Spark的主要组件、集群架构原理、集群环境搭建以及Spark应用程序的提交和运行;第3~9章讲解了离线计算框架SparkRDD、SparkSQL和实时计算框架Kafka、SparkStreaming、StructuredStreaming以及图计算框架GraphX等的基础知识、架构原理,同时包括常用Shell命令、API操作、内核源码剖析,并通过多个实际案例讲解各个框架的具体应用以及与Hadoop生态系统框架Hive、HBase、Kafka的整合操作。本书通俗易懂,案例丰富,注重实操,适合Spark新手和大数据开发人员阅读,也可作为培训机构和高校大数据及相关专业的教学用书。
品牌:清华大学
上架时间:2022-09-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
张伟洋
同类热门书
最新上架
- 会员随着数字化的发展,数据逐渐融入生产、分配、流通、消费和社会服务管理等环节,为数据的拥有者或使用者带来经济效益,成为一种新型的生产要素,给生产方式、生活方式和社会治理方式带来了深刻的变革。本书主要介绍数据要素化时代的数据治理。本书分为5篇。第一篇“数据治理新趋势”介绍DataOps的发展及实践,产业级数据治理新趋势,数据治理的场景化、工程化和智能化,以及数据资产的安全运营。第二篇“新理论、新方法和新计算机12.1万字
- 会员本书是《数据库原理——GaussDB技术及应用》一书配套的辅助教材。全书共分3部分:第一部分为实验指导,共有13个综合实验,每一个实验都是根据教学目标而设计,详细讲述了每一个实验的实验目的、实验任务及实验步骤,从而培养学生掌握关系数据库管理软件技术与应用的技能;第二部分为习题集,是根据主教材各章节内容编写的习题及习题答案,内容广泛,有填空、选择、简答、设计及实验题等多种形式,利求通过对这些习题的训计算机6.9万字
- 会员本书以Python作为开发语言,系统介绍PySpark开发环境搭建流程及基于PySpark进行大数据分析的相关知识。本书条理清晰、重点突出,理论叙述循序渐进、由浅入深。本书共7章,第1?5章包括PySpark大数据分析概述、PySpark安装配置、基于PySpark的DataFrame操作、基于PySpark的流式数据处理、基于PySpark的机器学习库,内容介绍注重理论与实践相结合,通过典型示例计算机10.4万字
- 会员时序数据库是一种新型技术,主要用于工业互联网软件建设中。近年来,伴随着物联网技术在智能制造、交通、能源、智慧城市等领域的发展,时序数据库也发展迅速,成为搭建应用的必备数据库之一。《深入理解InfluxDB》从InfluxDB的安装开始,一步步详细介绍InfluxDB的功能及原理,带领读者深入理解以InfluxDB为代表的时序数据库。计算机7.6万字
- 会员《MySQL从入门到精通(第3版)》从初学者角度出发,通过通俗易懂的语言和丰富多彩的实例,详细介绍了MySQL开发需要掌握的各方面技术。全书共分为4篇22章,包括数据库基础,初识MySQL,使用MySQL图形化管理工具,数据库操作,存储引擎及数据类型,数据表操作,MySQL基础,表数据的增、删、改操作,数据查询,常用函数,索引,视图,数据完整性约束,存储过程与存储函数,触发器,事务,事件,备份与恢计算机14万字
- 会员本书以案例的形式,介绍从思维模型分析到场景实践的数据分析方法。全书围绕“数据分析”与“运营增长”两大关键要素,在系统介绍数据分析思维、数据分析方法、数据采集技能、数据清洗技能等基础知识的同时,以问题为导向,解读运营与增长的关键性业务内容,在获客、激活、留存、变现、自传播循环等各个核心运营环节展开数据分析实战。本书提供案例相关数据集与源码包,适合数据分析、产品运营、市场营销等行业有数据分析具体业务需计算机12万字
- 会员本书围绕数据挖掘竞赛,讲解了各种类型数据挖掘竞赛的解题思路、方法和技巧,并辅以对应的实战案例。全书共11章。第1章介绍数据挖掘竞赛的背景、意义和现状。从第2章开始,介绍了各种不同类型的数据挖掘竞赛包括结构化数据、自然语言处理、计算机视觉(图像)、计算机视觉(视频)、强化学习。每种类型的数据挖掘竞赛包含理论篇和实战篇:理论篇介绍通用的解题流程和关键技术;实战篇选取比较有代表性的赛题,对赛题的优秀方案计算机6.7万字