![Python深度学习:基于TensorFlow(第2版)在线阅读](https://wfqqreader-1252317822.image.myqcloud.com/cover/658/48593658/b_48593658.jpg)
会员
Python深度学习:基于TensorFlow(第2版)
更新时间:2024-04-12 18:45:12 最新章节:封底
书籍简介
1.内容选择:提供全栈式的解决方案。深度学习涉及范围比较广,既有对基础、原理的要求,也有对代码实现的要求。如何在较短时间内快速提高深度学习的水平?如何尽快把所学运用到实践中?这方面虽然没有捷径可言,但却有方法可循。本书基于这些考量,希望能给你提供一站式解决方案。2.层次安排:找准易撕口,快速实现由点到面的突破。我们打开塑料袋时,一般从易撕口开始,这样即使再牢固的袋子也很容易打开。面对深度学习这个“牢固袋子”,我们也可以采用类似方法,找准易撕口。如果没有,就创造一个易撕口,并通过这个易撕口,实现点到面的快速扩展。3.表达形式:让图说话,一张好图胜过千言万语。机器学习、深度学习中有很多抽象的概念、复杂的算法、深奥的理论,如NumPy的广播机制、梯度下降对学习率敏感、神经网络中的共享参数、动量优化法、梯度消失或爆炸等,这些内容如果只用文字来描述,可能很难达到让人茅塞顿开的效果,但如果用一些图来展现,再加上适当的文字说明,往往能取得非常好的效果,正所谓一张好图胜过千言万语。除了以上谈到的三个方面,为了帮助大家更好地理解,更快地掌握机器学习、深度学习这些人工智能的核心内容,本书还包含了其他方法,相信阅读本书的读者都能体会到。我们希望通过这些方法或方式带给你不一样的理解和体验,使你感到抽象数学不抽象、深度学习不深奥、复杂算法不复杂、难学的深度学习也易学,这也是我们写这本书的主要目的。
品牌:机械工业出版社
上架时间:2022-08-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
吴茂贵 王冬等
最新上架
- 会员《PyTorch深度学习与企业级项目实战》立足于具体的企业级项目开发实践,以通俗易懂的方式详细介绍PyTorch深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。《PyTorch深度学习与企业级项目实战》共分18章,内容主要包括人工智能、机器学习和深度学习之间的关系,深度学习框架PyTorch2.0的环境搭建,Python数据科学库,深度学习基本原理,计算机10.8万字
- 会员本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI计算机15.8万字
- 会员2023年以来,OpenAI相继发布了聊天机器人模型ChatGPT、新一代多模态大模型GPT-4等产品,以强大的能力俘获了大量用户,颠覆了用户对于AI的认知。本书以ChatGPT为中心,对ChatGPT的相关知识进行详细的讲解。本书共12章,前5章从ChatGPT概述、技术底座、内容变革、产业格局、商业展望5个方面对ChatGPT进行了解读,帮助用户全面了解ChatGPT,对其形成完整的认知。第6计算机12.8万字
- 会员在人工智能技术的大力驱动下,智能控制与强化学习发展迅猛,先进自动化设计与控制日新月异。本书针对复杂离散时间系统的优化调节、最优跟踪、零和博弈等问题,以实现稳定学习、演化学习和快速学习为目标,建立一套先进的值迭代评判学习控制理论与设计方法。首先,对先进值迭代框架下迭代策略的稳定性进行全面深入的分析,建立一系列适用于不同场景的稳定性判据,从理论层面揭示值迭代算法能够实现离线最优控制和在线演化控制。其次计算机8.7万字
- 会员本书具体包含以下内容:首先,探讨ChatGPT对法律界的冲击,以及律师等从业者的不同反应,进一步分析AI技术对行业的影响和发展趋势。接着,简要介绍ChatGPT的技术原理及应用场景。随后,详细讨论如何将AI力量融入律师职业路径,构建专业律师成长的新飞轮。接下来,分别讨论如何将ChatGPT(GPTs)应用于渠道与案源、检索与研究、案件分析,以及法律文书撰写与合同审核,实现部分日常事务自动化执行。之计算机10.6万字
- 会员本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字
- 会员这是一本从工程化角度讲解大语言模型的核心技术、构建方法与前沿应用的著作。首先从语言模型的原理和大模型的基础构件入手,详细梳理了大模型技术的发展脉络,深入探讨了大模型预训练与对齐的方法;然后阐明了大模型训练中的算法设计、数据处理和分布式训练的核心原理,展示了这一系统性工程的复杂性与实现路径。除了基座模型的训练方案,本书还涵盖了大模型在各领域的落地应用方法,包括低参数量微调、知识融合、工具使用和自主智计算机12.1万字