- 高等数学·上册(第2版)
- 罗敏娜 王娜 王涛
- 930字
- 2021-03-27 22:33:19
2.1.2 导数的定义
定义1 设函数y=f(x)在点x0的某邻域内有定义,当自变量x在点x0处取得增量Δx(点x0+Δx仍在该邻域)时,相应的函数y取得增量Δy=f(x0+Δx)-f(x0),如果极限
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071001.jpg?sign=1739585246-5f2IXNM4NQPkXAoUG0BMUrv9ERN8lV1S-0-808d189c2361f422537cb09462e66b54)
存在,则称函数y=f(x)在点x0处可导,极限值称为函数y=f(x)在点x0处的导数,记作f′(x0),即
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071002.jpg?sign=1739585246-LF42mv3lqeeaEW3cywtvxFlNVq5hqACI-0-706fffa4dd731c720cd544ae28285a25)
函数y=f(x)在点x0处的导数也可记为
上述极限中,若令x=x0+Δx,则当Δx→0时,x→x0,导数还可以表示为
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071004.jpg?sign=1739585246-YGB05pZh39pmX3RGj9WcIOHcCiI6EHr3-0-845b3ab6abc91a6af0e5fe03ef54d904)
如果记Δx=h,导数也可表示为
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071005.jpg?sign=1739585246-rttXyOmKyxEfEpNMUFDn406JrLpEg7n7-0-31219e2f07354dd76e5342a8e2031176)
函数f(x)在点x0处可导也可以说成函数f(x)在点x0处导数存在或具有导数.
如果函数y=f(x)在开区间(a,b)内的每一点都可导,则称函数f(x)在开区间(a,b)内可导,即对任何x∈(a,b),有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071006.jpg?sign=1739585246-iEQ2dCt8hZxPAOMjo99Gc8NFiXIj46V4-0-5782b1e73e992c4059aabbc72585db37)
这样对于开区间(a,b)内的每一个确定的x都对应着一个确定的导数f′(x),这就构成了一个新的函数,称为导函数(简称为f(x)的导数).记作f′(x),y′,
而f′(x0)为导函数f′(x)当x=x0时的函数值,即
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071008.jpg?sign=1739585246-uJazGwMTiAbDjDCoU90yYpZIL1Ad0mFA-0-b8dcfce028eca8c18bf59c732868c9c3)
例1 设f′(x0)存在,求极限
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071009.jpg?sign=1739585246-QA6aoeLekVjEy4IGpORNr9jMnhc2WfrD-0-b7a02c716804bef59a0348a6f836999f)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00072001.jpg?sign=1739585246-jrVO5oseVkg6D47ZCLyC5PMZObzifI6a-0-d1bea982733be9fc230b0ba39f273c89)
下面利用导数的定义来求一些简单函数的导数.
例2 求函数f(x)=C(C是常数)的导数.
解
即(C)′=0.
例3 求函数f(x)=xn(n∈N+)在x=a处的导数.
解 由定义有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00072003.jpg?sign=1739585246-9SuoIN8e7k7NlMQDso5YQ4n2GsFLWGdx-0-a2771cd69714ac9e745195c1e3813edd)
推广可得
(xn)′=nxn-1.
更一般地,有
(xμ)′=μxμ-1 (μ为实数).
例4 求函数的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00072005.jpg?sign=1739585246-6YbCKniEKMJO3k4dT5wn8UPiBhtAkOSG-0-67582f975a8617870063de0c1cde34ac)
例5 求函数的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00072007.jpg?sign=1739585246-MWTVnkVk9fEWyxgGuAebSPnZ1DNgkzYd-0-da423bfaf527cc28832110800df3ed7f)
例6 求函数f(x)=sinx的导数.
解 由定义有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00072008.jpg?sign=1739585246-wrdO3UowY0Zo8xuGHDdm03TtgytKeww4-0-f141ae2962fea35a3d41ffedf2ed4ed2)
类似可得
(cosx)′=-sinx.
例7 求函数f(x)=ex的导数.
解 由定义有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00073001.jpg?sign=1739585246-wj5a4Eg471W4M4O2LGWKxjoXK6XqSqvg-0-bb06e48083ddd80cdacaeff6bdbeac10)
即 (ex)′=ex.
类似可得 (ax)′=axlna.
例8 求函数f(x)=lnx的导数.
解 由定义有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00073002.jpg?sign=1739585246-mogyL8c8rSHJH933GnnPr8tAIRT5QtiP-0-2636f39b83c84332e910e268464d1066)
定义2 如果y=f(x)在(x0-δ,x0]有定义,若左极限
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00073003.jpg?sign=1739585246-lDPDypxkVNwEDa6vcuZ0SwWXtDPHDabC-0-2cf54501d9324358f1840695ccdbb860)
存在,则称函数f(x)在点x0左侧可导,并把上述左极限称为函数f(x)在点x0的左导数,记作f′-(x0),即
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00073004.jpg?sign=1739585246-b9Vv45ldtnwEgao1oGAMtpnjEvxVJJO7-0-1a1f8dc4467a46e9d188a1770c342c91)
类似地可以定义函数f(x)在点x0的右侧可导及右导数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00073005.jpg?sign=1739585246-93vrY1SdSuiFNC1U6YNdzHppPRjnOKfO-0-57b91569303184a3b78cf3a506edf00d)
由极限存在的条件,有
性质 函数f(x)在点x0可导的充分必要条件是在点x0的左、右导数都存在并且相等,即
f′(x0)存在⇔f′-(x0)=f′+(x0).
由单侧导数可以定义函数在闭区间[a,b]上可导.如果函数f(x)在开区间(a,b)内可导,且在a点的右导数存在,在b点的左导数存在,则称函数在闭区间[a,b]上可导.
例9 讨论函数f(x)=|x|在x=0处的可导性.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00074001.jpg?sign=1739585246-HgcmC07Q13tRNldJMbkNHRiLobd7zVdq-0-c7be82013b679e9784ba3d3984c28837)
因此不存在,故f(x)=|x|在x=0处不可导.
例10 设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00074003.jpg?sign=1739585246-VZCQB7yhbLgdbPFaBxxMuVLkhZ0io5T6-0-b96a77d1b1c1b68d7b76cd9e2f1a847a)
判别f(x)在x=1处是否可导.
解 由于
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00074004.jpg?sign=1739585246-nMzPmIiUPlc3Vfq61iIs47NKl79RWSJV-0-d86cbef9a1f53ab26cbacd02be5c19eb)
所以f(x)在x=1处不可导.