- 高等数学·上册(第2版)
- 罗敏娜 王娜 王涛
- 10字
- 2021-03-27 22:33:20
§2.2 求导法则与导数公式
2.2.1 函数的和、差、积、商的求导法则
定理1 设函数u=u(x)及v=v(x)在点x处可导,C为常数,则
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077001.jpg?sign=1739583138-U2Cp9IRy6jsUbFDO8uiMtqIs16EvR1c3-0-b06ad22bff8147ef385e5170433cd7e0)
下面只证明(2),其余留给读者作为练习.
证 由于可导必连续,有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077002.jpg?sign=1739583138-2jy7vDEiJoxDZnTodNQOZTTlUv50KO9t-0-441356c37a6c27e3636458a249557f4a)
例1 求函数y=tanx的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077003.jpg?sign=1739583138-g9x5xTkdirMtU4tKNs71yO12CuYzgcHA-0-a9ef2963c3dbb6a89762e57e93cecb42)
即 (tanx)′=sec2x.
类似可得
(cotx)′=-csc2x.
例2 求函数y=secx的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077004.jpg?sign=1739583138-kiPe1BtRqURBxpBVFB9yYZF4OYpFizLI-0-68369a2364c24affd59ed2315e6e8867)
即 (secx)′=secxtanx.
类似可得
(cscx)′=-cscxcotx.
例3 设y=3x3+5x2-4x+1,求y′.
解 y′=3(x3)′+5(x2)′-4(x)′+1′=9x2+10x-4.
例4 设,求
解 f′(x)=3x2-3(excosx)′=3x2-3(excosx-exsinx)
=3x2-3ex(cosx-sinx).
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078001.jpg?sign=1739583138-PFzQmx4VpXbeuwu3vgzH8Nj7o54eviuF-0-981d1f7636a58895b2f9a8fe8f1208da)
例5 设f(x)=x2lnx,求f′(x).
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078002.jpg?sign=1739583138-AcLJFOk4lpwr842ERUqB5YxmY8luIOZg-0-0b795a640260b3115d415a237f04c095)