- 生成对抗网络入门指南(第2版)
- 史丹青编著
- 388字
- 2021-07-16 16:48:12
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/003-1.jpg?sign=1739684901-O5x3jPWPxrUE2xkzvOC8Yo9JAxKWVWwp-0-96bd6dfb7321e55a06e4300f765d526d)
图4-10 LSUN室内数据集在5个epoch后的生成结果
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/003-2.jpg?sign=1739684901-fVnTCvzEJc0P9SsySQ3auS4Eqg45KHbC-0-ff7fcefe48a6651b5b2015daccf20751)
图4-13 DCGAN中卧室室内图的变化
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/004-1.jpg?sign=1739684901-eQ9BPI83aSI4jcmy58Zal4LXYfg368QU-0-fb3c784ec9c48b1497ae27410dc2cdb5)
图5-1 三维中的流形
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/004-2.jpg?sign=1739684901-pVh22MjRFuOXUVZO5CYngoWmzTaxtp05-0-319be43028f9bbc729a034abf275812d)
图5-2 DCGAN的梯度消失问题
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/005-1.jpg?sign=1739684901-Xeu0mG2Ig6n3RlgFe6otNBTrOKKpjT0t-0-170061d98df7bf5b506380b30a30c1e8)
图5-3 DCGAN的网络更新不稳定示意图
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/005-2.jpg?sign=1739684901-nyXePVjbFBhxNpKaZX1IbX5HE6Og8Uz8-0-ecaf9260560c401bdd294cc93b6a4f90)
图5-5 GAN与WGAN的判别器曲线示意图
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/006-1.jpg?sign=1739684901-0dg6aMYsX0alxoRluGA20WjXIbXTP8qa-0-7c55f2d6f8de47c5b90f49b18082d981)
图5-6 WGAN不同架构的实验结果比较
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/006-2.jpg?sign=1739684901-qBsNxlbpfgikhJm2XG0CkgxLsPsylkOW-0-e90ca940bc3f3d0f146e3f160a4a1f24)
图5-16 WGAN与WGAN-GP梯度爆炸与梯度消失比较
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/007-1.jpg?sign=1739684901-GrQ7PvG8X6ad6lbfcPnIF6kPKtFSTLzB-0-17bbbd308b4607e14c75cba6b4a48ae7)
图6-5 几种生成模型的效果比较
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/007-2.jpg?sign=1739684901-zLBbxGzE3Oe4vYjDw1Nu0DdXcx1jXWWk-0-74c1af9fdb6762f7be950c0f37acf15f)
图6-11 k-means聚类效果图
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/007-3.jpg?sign=1739684901-Z80CYUu8LPx0HLeNJPfSSL9SM4cPznnZ-0-e5a4767856fa1765b5f1b028a1f6b71e)
图7-19 StackGAN-v2网络结构图
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/008-1.jpg?sign=1739684901-heWWTm9CxzZWvtrCcCDoNaNIFRIvqcu2-0-8be47c073badcd637a5b78be26f3a063)
图7-23 StackGAN-v1与StackGAN-v2的对比
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/008-2.jpg?sign=1739684901-G4oIIBoPVnE5uDNei97GOS1n0fVDrfJn-0-9459c83a6a261c5b8d1c3e0c396fc008)
图8-1 iGAN:交互式图像绘制
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/008-3.jpg?sign=1739684901-WXjZxfF2AfAGZTxy9IqF5IxsqX5WAEu7-0-726b835acd7e706cf5e88229d3c8f733)
图8-9 iGAN软件生成的三个案例
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/009-1.jpg?sign=1739684901-FUstdy43uPpQ9qUfR2UkVjcETtNW8ijS-0-85f5c1fccd42337d8da48e8f04e815b8)
图8-11 黑白图像转换为彩色图像
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/009-2.jpg?sign=1739684901-MotOdKnnfZI0aBG1008RQFnNhDA7J0Ry-0-35394353dea60a6d0354092ad65070c2)
图8-21 Web软件试用:输入方块生成建筑物
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/009-3.jpg?sign=1739684901-tB83go6Ai5JyAFp71crbpgp82sglrs5O-0-b11c800e62ae18de6eefe00c4d22279e)
图8-23 模拟图片与道路实景转换
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/010-1.jpg?sign=1739684901-wRfFqDIjUPJPaM5xHtNXg6p02qjUxOlZ-0-e54759656dc470fba12334884437ddf0)
图8-32 莫奈画作与实景的互相转换
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/010-2.jpg?sign=1739684901-yRwpITJGYUW05Ifg2NqE9FVZFeAWAIqq-0-1dda0f27998292a6f030b70a6e3af18a)
图8-34 神经网络风格转换
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/010-3.jpg?sign=1739684901-T9N6ZCPdishD2HMSdG0Fgg6PRZE3hewP-0-2f5a3a340447a487231b622b67ef948f)
图8-54 使用CycleGAN实现多领域转换的情况
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/011-1.jpg?sign=1739684901-2Cd6L7ya9lfFURmmi2v3yFntKWfWx5h7-0-0dbcdb0370d4bfd43dcbf0aa94536099)
图8-55 使用StarGAN实现多领域转换的情况
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/011-2.jpg?sign=1739684901-mmN4eYhMjCWMZMlBM85JK6EIIAEROrMk-0-eec05018e40e4a62ffb9bacf592183f0)
图9-6 SeqGAN、RankGAN以及LeakGAN在二维平面上的特征可视化
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/011-3.jpg?sign=1739684901-eWzUwTlmSq3jFkXs0qbOfXlaH8QiRh8H-0-e27658ca531c27b6421f2a20f5425682)
图11-1 Inception v3网络结构图
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/012-1.jpg?sign=1739684901-j5WexyhO1b0yLMAd24NrS8OpAdUtWtsZ-0-3d286db6fbf6d140c8837aea095d4fce)
图11-8 训练集、正态分布随机输入、网络映射隐含层的数据分布示意图
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/012-2.jpg?sign=1739684901-lBTtn1ritHJq0hgxHiksgIUnujLyREk4-0-5273ed157705cda1fcad102b0459ccae)
图12-1 图像模糊情况的物体检测试验
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/013-1.jpg?sign=1739684901-NyfhcNsvuDGAYRLPmsqGa2C0qPzRdzqj-0-48a9329325b61fde84235517057bfa32)
图12-14 WaveGAN生成效果评分
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/013-2.jpg?sign=1739684901-JX5dMQiaZNKnpv2D9MBz9zHrHhG8xmCt-0-c7d7315960deb8da5b3cca848af72c59)
图12-24 云朵和动物
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/013-3.jpg?sign=1739684901-L6Bi053R7nPqfbSfkWDDxwpKTIIv85S5-0-d4cf638a7c6e29627f3f03c750eb6161)
图12-36 观众高评价的CAN生成作品
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/014-1.jpg?sign=1739684901-M6GtYaCQizqfbf7m8v8l6rJ3UuYFhwFG-0-94a5dd43cf1ada09916f7326c564cae9)
图12-37 CAN生成作品各项排行榜
![000](https://epubservercos.yuewen.com/DD48BE/20620328308261006/epubprivate/OEBPS/Images/014-2.jpg?sign=1739684901-pSJcD54yZghEThvsPX107KuLg5sf2SQt-0-ed3cbb99f068ef74a74d01bc4cf8841a)
图12-45 SketchRNN的草图自动补全